
技能伝承プラットフォームの研究開発と「溶接」への適用

技術本部 システム研究開発センター 統括研究員

下田 修

未来目標における本セッションの位置付け

アジェンダ

- 1 テーマと未来目標との関連
- 2 テーマ技術内容紹介
- 3 展開
- 4 今後の展望

1

未来目標との関連

"アンビエント":人間中心のコンピューティング

スマートグラスと深層学習を 利用した現場作業ガイド

人間の姿勢・歩行計測による ヘルスケア

複数人での共同作業 (メタバース)

現場技能のサステナビリティ

引継先 方法例 人間 技能伝承 マニュアル化 ヒト・機械協働 完全機械化 機械

古くて新しい問題
Who
When
Where
What
Why
「カン・コツ」
Fiジタル化・分析が難しい
さらに…

・外国人の増加(言葉の壁)

・早期熟達のニーズ増加

技能伝承のDXに向けて

加工現場における技能

能力分類	熟練技能者の能力				
	段取り能力		作業中能力 (感知力に基づく)		その他
	設計力	調整力	状況判断力	手わざ	トラブル対応力など
現場技能の例	・加工方案設計 ・押湯配置設計	その日の天候に 応じて添加剤の 量を調整	・出湯タイミング「今、取り出せ」	・注湯作業 ・研磨作業 ・バリ取り作業	新たなトラブルに 迅速に対応できる
測定の難易度	容易	比較的容易	比較的困難	困難	困難
◆ 作業前 作業直前 作業中 「製造現場における熟練技能の抽出に関する研究」とり引用					

技能とは

身体的

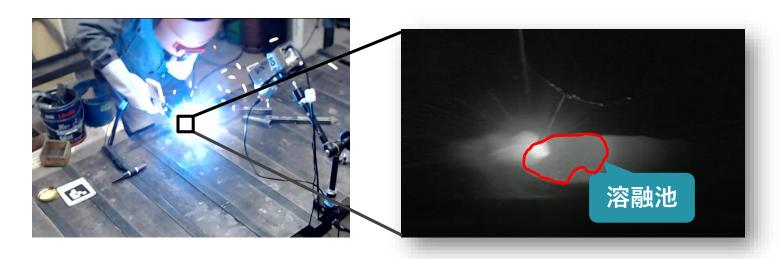
かつ

知的

な能力

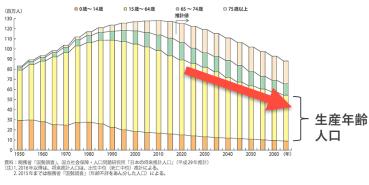
「製造現場における熟練技能の抽出に関する研究」より引用 https://www.aist.go.jp/pdf/aist_j/synthesiology/vol03_01/vol03_01_p47_p55.pdf

身体的能力(物理的動作)と知的能力(判断力・応用力 etc.)の両面が重要


「溶接」を題材に 現場技能の計測・訓練システムの研究開発を推進 2

テーマ技術内容紹介

「溶接」は高度な知的&身体的作業


溶接作業者は「溶融池」の状態などを見ながら 溶接トーチの動かし方を調節し溶接を進める

特に溶融池を安定させながら溶接を進めることが 高品質な溶接のために重要とされている

「現場」を担う人材の不足

日本の生産年齢人口の推移(推計)

「2018年版中小企業白書」より引用し一部注釈を加筆 https://www.chusho.meti.go.jp/pamflet/hakusyo/H30/h30/html/b2 1 2 1.html [現場作業を担う技能人材の不足] 素形材・産業機械・電気電子情報

⇒ 2022年には 19.9万人の不足見込

関連製造業分野の人手不足数:4.9万人(2017年推計値)

「製造業における 特定技能外国人材の受入れについて(素形材・産業機械・電気電子情報関連製造業)」より https://www.sswm.go.jp/assets/img/top/gaikokujinzai.pdf

- ・熟練技能者による高度なモノづくりは日本企業が従来得意とし 競争力の源泉になってきた
- ・熟練技能の喪失は日本の産業(とりわけ製造業)の競争力低下に直結
- ・「溶接」はインフラの製造に加えメンテナンス時においても 必要な技能であり、国内で実施できる能力の維持が不可欠

既存の溶接シミュレータの効果と課題

VRで自由に繰り返し練習できるので 初心者が基本的な動作を身に着けることに役立つ

実際の溶接技能の向上の観点で見ると、 なかなか上手くならない人がいる

事例 1. 指導者の指摘内容が理解できない

何が課題でどのように改善すればよいか、指導者が初学者にわかりやすく提示できない 事例 2. 思ったように体を動かせない

ストリンガー、ウィービングといった「技」が、 頭(概念)では理解していても、思ったように体を動かせない

事例3.実際の溶接時に再現できない

シミュレータと実際の溶接で違いが大きい

システムの全体構成

VRシミュレータ

繰り返し練習による定着

Why & How

計測とデータベース化

「カン・コツ」(メンタルモデル) と身体性に着目した分析

現場事象の高精度計測

分析トレーナ

シミュレータの動作(動画)

現場事象の高精度計測

ヒトの姿勢や道具の位置などを高精度に計測

人間

- ・姿勢
- ・心拍

道具 (トーチ)

- ・位置、角度
- ・電流、電圧

反応 (溶接現象)

- ・溶融池
- ・アーク光
- ・溶接音
- ・におい

溶接中でも 全身のモーションキャプチャが 可能なデバイス

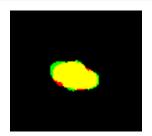
高精度計測可能なマーカー等を使用し ミリメートル精度で トーチの位置・角度を計測

強い光の中で溶融池を撮影 実験を繰り返し様々なパターンの データを収集

センサーフュージョンによる データの欠損やレートの 違いへの対応・高精度化

VRシミュレータ

- 溶接は複雑な物理現象であり、完全な物理シミュレーションは難しい (特にリアルタイムで行うことは困難)
- 一方、溶接中の知的判断のためには、とりわけ溶融池の見た目が 現実に可能な限り似ている必要がある


物理モデルに基づくシミュレーションモデルと 機械学習を用いた溶融池の画像予測モデルを融合し リアルタイム性と見た目の再現性を両立

溶接中の カメラ画像

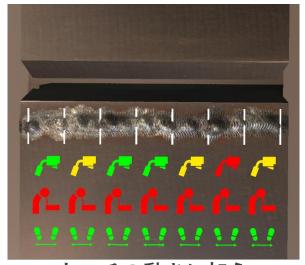
溶融池形状 (目視でマーキング)

溶融池の予測結果(黄色)と 現実との誤差

トレーナによる練習結果の評価・分析

- 熟練溶接士による溶接作業データを、個人差を考慮しつつ 教師データにしてスコアリングモデルを作成
- 溶融池の安定度に加え、トーチの動きや姿勢の良しあしを分析・評価

評価項目の例


「溶融池〕

- ・面積安定度 [トーチ]
- 角度
- ・速度
- [姿勢]
- · 母材-頭部間距離
- ・ひじ/骨盤部安定度

様々な状況別データや初学者~熟練者のデータを蓄積することで 分析精度向上・バリエーションへの対応を予定

身体動作の分析

トーチの動きに加え姿勢の安定度を評価

練習時の体の動きを再生

上手に溶接できたときの体の動かし方を客観的に見ながら 自分に適した良い溶接姿勢・動きを学ぶ 3

展開

技術応用

技能伝承 プラ<u>ットフォーム</u>

溶接技能伝承への展開

- ・資格認定に対応した練習メニューの開発
- ・技能訓練学校などへの展開

他の現場技能への応用

・建築、金属加工など他の技能の分析、伝承

コア技術の応用

- ・IE(Industrial Engineering)の 高度化、省力化
- ・現場作業の可視化、改善提案
- ・技能高度化による品質向上

外部との連携

- HCMIコンソーシアムにて溶接技能伝承をテーマとした ワーキンググループおよび研究会を立ち上げ
 - 今後、溶接の専門家を交えて議論を進めトレーナ機能や溶接現象のデジタルツインの再現度向上を計画

- 2022国際ウェルディングショー(2022/7/13-16, 東京ビッグサイト)に出展

4

今後の展望

今後の展望

- ・ 現時点では、「カン・コツ」は先行研究に基づいて 計測データを用いて特性要因として扱っている
- 今後、より抽象的であいまいな「個人的感覚(メンタル)」と 「実際の行動(体の動かし方)」の関連を明らかにしながら、 個人ごとの感覚の差異を吸収・変換して伝える 「技能伝承のパーソナル化」にチャレンジしていきたい

NS Solutions、 NSSOL、NS(ロゴ)、は日鉄ソリューションズ株式会社の登録商標です。

その他本文記載の会社名及び製品名は、それぞれ各社の商標又は登録商標です。