

最先端の素粒子物理データ解析システム 換装で処理性能とストレージ容量を強化

NSSOLの綿密な準備で600台超の機器を3カ月でリプレース

背黒

素粒子物理学の国際共同実験で取得 する膨大な実験データを高速に解析 する大規模計算機システムを3年単位 で換装している。第4期システムの目標 は実験データの増加に対応した処理 性能とストレージ容量の強化である。

東京大学素粒子物理国際研究センター

26 Key to Success 2016 Summer

所在地:東京都文京区本郷7-3-1(本郷キャンパス)

東京大学 素粒子物理国際研究センター 准教授 真下 哲郎氏

ソリューション

832CPU/9984コアの計算サーバーお よび10.5Pバイトと大容量のディスクア レイ装置を採用。公開入札で選ばれた 新日鉄住金ソリューションズの支援に よって、サーバーやストレージなど600 台超の機器を3カ月で換装する。

成果

短工期ながら計画通りハードウエアを 換装。ソフトウェアのインストールなど を行って運用を開始した。プロセッサ コア数やハードディスク装置の容量を 増やすことによって、処理性能やスト レージ容量を強化している。

第4期システムでは、実験データ増加への対応をこれまで以上に重視

スイスに建設された外周27kmに及ぶ大型の素粒子物理学実験装置を使い、世界 38カ国178の大学・研究機関が共同で進める「アトラス実験」。同実験では、毎秒数百 Mバイトと膨大な実験データが発生するため、大規模グリッドコンピューティングプロジェ クト「WLCG(Worldwide LHC Computing Grid)」により分散処理を行っている。東 京大学素粒子物理国際研究センターは、アトラス実験データ解析の国内拠点であり、 WLCGによる世界的な分散処理の一部も担う「アトラス地域解析センター計算機シス テム」を2006年末に構築し、2007年から運用を開始した。 同システムでは基盤ハード ウエアを3年ごとに換装して処理性能を向上させてきたが、2015年9月に調達した第4 期システムでは、実験データ増加への対応をこれまで以上に重視していた。

NSSOLが綿密に準備、600台超の搬入・設置などが10日以内に終了

第4期システムの基盤ハードウエアは、計算サーバー416台で832CPU/9984プロセッ サコアの計算リソースを用意し、80台のディスクアレイ装置でストレージ容量を第3期の 1.5倍強、10.5Pバイトに増強する仕様だった。公開入札で選ばれた新日鉄住金ソリュー ションズ(以下、NSSOL)は、第1~3期のシステムを手掛けてきた実績を活かし、指定通 り3カ月で第4期システムへの換装を行った。

短工期の換装は綿密なキッティングで実現した。サーバーやストレージなどの機器は キッティング場でラックに搭載して配線。性能検証までを実施して、ラック単位でセンター へ搬入・設置することなどで、作業効率を高めた。サーバーとストレージ合計で600台 超の機器を扱いながら、機器の搬入・設置、配線に要する期間を10日以内に収めている。

CPUコア数増加とHDD大容量化で、処理性能とストレージ容量を強化

2015年12月末に第4期システムは基盤ハードウエアの換装を終え、ソフトウエアのイ ンストールなどを行って運用を開始している。

成果は期待通りである。システムの処理性能は、サーバー1台当たりのプロセッサコア 数を増やして向上させた。ストレージ容量は、ディスクアレイ装置で使う個々のハードディ スク装置の容量を2倍に増やして拡張している。これらにより、第4期システムでは、これ まで以上に膨大な量の実験データに対応することができる。

今後は、アトラス地域解析センター計算機システムと、世界各地の計算センターが参 加するWLCGサイトとの接続に使うネットワーク帯域の強化などによってデータの転送 速度を向上させ、さらに利便性を向上させていく予定だ。

Kev to Success

第4期となるアトラス地域解析セン ター計算機システムの目標は、実験で 取得するデータの増加に対応すること である。

東京大学素粒子物理国際研究セン ター 准教授の真下哲郎氏は「アトラス 実験では、高速の電子回路などでデー タを絞り込むのですが、それでも毎秒 数百Mバイトもの実験データを取得し ます。そのデータをさらに取捨選択し て解析するのですが、データ量が膨大 なため世界百数十カ所の計算センター が連携して分散処理しています。アト ラス地域解析センター計算機システム は、その世界規模の分散処理の中でも 規模や性能などの点で非常に重要な 役割を担っています |と話す。

実験データの増加に対応するには、 処理性能とストレージ容量の強化が不 可欠だった。

「実験機器の改良や実験の本格化に よって、これからも解析する実験デー タは増えていきます。第4期システムは、 サーバー当たりのプロセッサコア数を 増やして処理性能を高め、ストレージ 容量をハードディスク装置の大容量化 で増やすことにしました」(同)

600台超の機器で構成する大規模シ ステムでありながら、換装に伴うシス テムの停止期間はできるだけ短くした いと考えた。

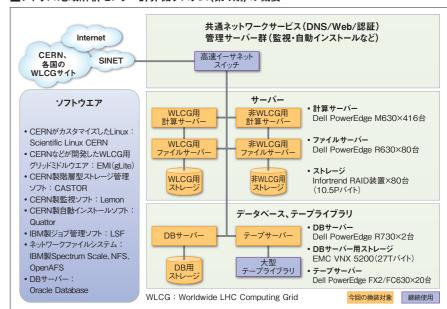
「今回の換装プロジェクトの時期は、 実験でデータを取得している最中でし た。実験データの解析も通年で行って います。世界的な分散処理システムに おける本システムの重要性を考慮し、 機器の搬入・設置、配線に要する期間 は10日以内と仕様書に記載しました| (同)

3期システムを手掛けており、第4期シ ステムへの換装も豊富な実績を基に 効率的に行った。

NSSOLが綿密にキッティング 大規模ながら計画通り換装

「今回もNSSOLは、計画通り的確に 換装を行ってくれました。計算サー バーやストレージは、学外のキッティ ング場でラック内の配線までを行って から、学内のセンターへ搬入していま す。また、機器の配線は仕様書で詳細 に規定していますが、NSSOLは仕様 以上の工夫をしてくれました | (同)

NSSOLは導入前に機器を試験的に 稼働させて検証まで行っている。


「サーバーやストレージの性能検証 もキッティング場で実施しています。

システムに高い負荷をかけたとき、期 待した性能が出ないことがまれにある のですが、性能検証によって問題発生 の有無を事前に調査したため、学内の センターにラックを設置したあとは、 わずかな作業でシステムを本格稼働さ せることができました」(同)

完成した第4期システムに対する評 価は高い。

真下氏は「アトラス地域解析セン ター計算機システムは、世界各国の WLCGサイトの中で最も信頼性が高 いシステムの一つで、扱えるデータ量 もトップクラスであると評価されてい ます。今回の換装でそのシステムの処 理性能とストレージ容量がさらに増強 され、利便性がこれまで以上に高まり ました。今後も、世界各地のWLCGサ イトとの接続ネットワークの帯域を強 化することなどで、システムの利便性 をより高めていく計画です |と語る。

■アトラス地域解析センター計算機システム(第4期)の概要

■コアテクノロジー

大規模なハードウエア/ソフトウエア/ネットワークをトータルで最適化するシステム構築・運用の実績と経験、 HPC (ハイパフォーマンスコンピューティング)、大容量ディスクアレイ装置

■システム概要

●サーバー: PowerEdge M630×416 (計算サーバー)、PowerEdge R630×80 (ファイルサーバー、AFSサーバー)、 PowerEdge R730×2 (DBサーバー) など ●ネットワーク: Brocade MLXe-32×2 (高速イーサネットスイッチ) など ●ストレージ: Infortrend ESDS3024G000F8C16DO0×80 (ディスクアレイ装置) など

Key to Success 2016 Summer 27

入札で選定されたNSSOLは、第1~